Original post here: http://crumpspot.blogspot.com/2013/04/power-led-bike-tail-light-with-arduino.html
Schmatic here: https://www.circuitlab.com/circuit/b6r5h8/rear-bike-light/
/*-------------------------------------------------------- Rear Bike Light Project Author: Chris Crumpacker Date: October 2012 Copyright (c) 2012 Chris Crumpacker. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. Sketch Notes: This version contains 6 modes of blinking with multiple speeds for some modes. This works off of a single button, with short presses the program steps thru the modes/speeds. When long pressed it goes into a "sleep" mode where the high powered LEDs are turned off. It also has the ablity to store the current mode so when leaving sleep mode or being brought back up from a power down it will return to the previous mode it was in. There is also an interal tempurature sensor that will put it into a hidden (at least from the mode scrolling) "limp home mode" during a certain temp range or evenshut the LEDs down if it gets any higher. --------------------------------------------------------*/ //------------------------- // Includes //------------------------- #include#include //------------------------- // Defines //------------------------- #define BUTTON_PIN 11 // Button #define ledPinl 9 // Left LED #define ledPinr 10 // Right LED #define powerPin 13 // Case LED to show that the circuit has power #define tempSensorPin A5 // Analog pin the case's Temp36 sensor is on #define LONGPRESS_LEN 10 // Min numberr of loops for a long press #define DELAY 10 // Delay per loop in ms #define CONFIG_VERSION "rbl1" // ID of the settings block #define memoryBase 32 // Tell it where to store your config data in EEPROM //Constructor for the Simple Timer enum { EV_NONE=0, EV_SHORTPRESS, EV_LONGPRESS }; //------------------------- // Variables //------------------------- boolean ok = true; // bool for the EEPROM's config setup int configAdress = 0; boolean currentButton = LOW; boolean button_was_pressed = false; int previousButton; int button_pressed_counter = 0; int longPress = LONGPRESS_LEN; int buttonCount = 0; long previousMillis = 0; boolean fromCheckTemp = false; long previousTempTime = 0; float tempLimp = 100; // In degrees (f) float tempShutdown = 120; // In degrees (f) int checkTempInterval = 30000; // In Milliseconds float freq; float freqInitial = .002; float freqChange = .002; float freqLimit = .006; int ledStep = 255; // How much to change the dimming (PWM) between each step for steps 6 to 9 and 10 to 13 int ledState = HIGH; // The struct for the config saved to the EEPROM struct StoreStruct { char* cVersion; // This is to detect if the settings stored in the EEPROM are for this config and sketch int bc; } storage = { CONFIG_VERSION, // Defaults 0 }; //------------------------- // Setup //------------------------- void setup() { Serial.begin(9600); // Sets up the serial port and speed pinMode(BUTTON_PIN, INPUT); // Setting the button pin to an input digitalWrite(BUTTON_PIN, HIGH); // Setting the button with a pull-up resistor, the button when grounded or "low" will be thought of as pressed pinMode(powerPin, OUTPUT); // Setting the pin for the LED on the board to show that power is on or will blink if in a sleep mode pinMode(ledPinl, OUTPUT); // External LED control pin 1 pinMode(ledPinr, OUTPUT); // External LED control pin 2 EEPROM.setMemPool(memoryBase, EEPROMSizeATmega328); // Set memorypool base to 32, assume Atmega328 configAdress = EEPROM.getAddress(sizeof(StoreStruct)); // Size of config object ok = loadConfig(); // Loads the config, and if it loads sets the bool "ok" to true buttonCount = storage.bc; // Sets the variable for the buttonCount to what is brought back from the storage checkTemp(); // Checks the intial temp at start up freq = setFreq(); // Sets the initial Frequency for the pulsing modes ledStep = setLEDStep(); // Sets the initial LED PWM step value for the dimming modes digitalWrite(powerPin, ledState); // Turns on the on board LED } //------------------------- // Functions //------------------------- // Loads the Config from EEPROM bool loadConfig() { EEPROM.readBlock(configAdress, storage); return (storage.cVersion == CONFIG_VERSION); } // Saves Config changes to the EEPROM void saveConfig() { EEPROM.writeBlock(configAdress, storage); } //--Button Handling-- // This function determines if the button press is short or long and is made to report back to a switch case void handle_button(int longPress, int modeType) { int button_now_pressed = !digitalRead(BUTTON_PIN); // pin low -> pressed if (!button_now_pressed && button_was_pressed) { //Short press if (button_pressed_counter < longPress) { if (modeType == 1){ /*Short press from one of the pulsing modes. This increments the button count, updates the Frequency and possibly the LEDStep and also stores the new buttonCount away in the EEPROM*/ previousButton = buttonCount; ++buttonCount; storage.bc = buttonCount; saveConfig(); setFreq(); setLEDStep(); } else if (modeType == 2){ /*Short press from one of the dimming PWM modes. This increments the button count, updates the Frequency and the LEDStep and also stores the new buttonCount away in the EEPROM*/ previousButton = buttonCount; ++buttonCount; storage.bc = buttonCount; saveConfig(); setFreq(); setLEDStep(); } else if (modeType == 3) { /*Short press for the sleep modes 14 and 15. This starts us back to the first mode (0) and sets the frequency and the LED step as well as store the button count to the EEPROM*/ buttonCount = 0; storage.bc = buttonCount; //Stores the buttonCount to EEPROM saveConfig(); setFreq(); setLEDStep(); fromCheckTemp = false; } //Long Press } else { if (modeType == 1 || modeType == 2){ /*Long press for any of the "awake" modes. It puts the external LEDs to sleep in mode 14 or sleep mode. Also it sets the previous button so when exiting the sleep mode it knows what to go back to*/ previousButton = buttonCount; buttonCount = 14; } else if (modeType == 3) { /*Long press from one of the sleep modes. This sets the button count back to the previous button, updates the Frequency and the LEDStep and also stores the new buttonCount away in the EEPROM*/ buttonCount = previousButton; storage.bc = buttonCount; saveConfig(); setFreq(); setLEDStep(); fromCheckTemp = false; } } } if (button_now_pressed){ ++button_pressed_counter; } else { button_pressed_counter = 0; } button_was_pressed = button_now_pressed; } //Checks the tempurature inside the circuit enclosure, void checkTemp() { unsigned long currentTempTime = millis(); // Set the current time if(currentTempTime - previousTempTime > 20000){ previousTempTime = currentTempTime; float Vcc = readVcc(); // Calculating the Supply Voltage Vcc = Vcc / 1000; // Converting from mV to Volts int reading = analogRead(tempSensorPin); // Reading the voltage from the sensor pin // Converting that reading to voltage float voltage = reading * Vcc; voltage /= 1024.0; // Print out the temperature in Celcius float temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree wit 500 mV offset to degrees ((volatge - 500mV) times 100) // Now convert to Fahrenheight float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0; if (temperatureF > tempLimp && temperatureF < tempShutdown) { //To Hot but not shutting down send to limp home mode buttonCount = 15; fromCheckTemp = true; } else if (temperatureF >= tempShutdown && buttonCount != 14) { //Shutting down buttonCount = 14; fromCheckTemp = true; } else if (fromCheckTemp) { fromCheckTemp = false; buttonCount = previousButton; } else { fromCheckTemp = false; } } else { //Holder for stuff to do while waiting on the time to check temp again } } //When starting up with a stored button count we need to find and set the appropriate Frequency "freq" for the button count float setFreq() { if (buttonCount == 0 || buttonCount == 3) { freq = freqInitial; } else if (buttonCount == 1 || buttonCount == 4) { freq = freqInitial + freqChange; } else if (buttonCount == 2 || buttonCount == 5) { freq = freqInitial + freqChange + freqChange; } else { freq = freqInitial; } return freq; } //When starting up with a stored button count we need to find and set the appropriate LED brightness "ledStep" for the button count int setLEDStep() { if (buttonCount == 6 || buttonCount == 10){ ledStep = 255; } else if (buttonCount == 7 || buttonCount == 11) { ledStep = 191; } else if (buttonCount == 8 || buttonCount == 12) { ledStep = 127; } else if (buttonCount == 9 || buttonCount == 13) { ledStep = 64; } else { ledStep = 255; } return ledStep; } //***************************// //******Blinking Modes*******// //***************************// //"bothFlipFlopPulse" The LEDs pulse back and forth (3 speeds) void bothFlipFlopPulse() { float ledIn; float ledOutL; float ledOutR; longPress = 10; checkTemp(); setFreq(); for (ledIn = 4.712; ledIn < 10.995; ledIn = ledIn + freq) // This sets the start of the LED (ledOutL) pulse on the sin wave to the first zero crossing 4.712 and ends it on the next 10.995. { ledOutL = sin(ledIn) * 127.5 + 127.5; // Making the sin wave all positive numbers and setting it to a scale of 0-255 for the PWM range ledOutR = 255 - (sin(ledIn) * 127.5 + 127.5); // This inverts ledOutR so it pulses to the high as ledOutR pulses to the low analogWrite(ledPinl, ledOutL); analogWrite(ledPinr, ledOutR); } handle_button(longPress,1); // Sets the Button function to run and read the button state, then returns the event, EV_SHORT, EV_LONG, or EV_NONE } //"bothPulse" Like "bothFlipFlopPulse" but with both LEDs on the same sin wave (3 speed) void bothPulse() { float ledIn; float ledOutL; float ledOutR; longPress = 10; for (ledIn = 4.712; ledIn < 10.995; ledIn = ledIn + freq) //This sets the start of the LED (ledOutL) pulse on the sin wave to the first zero crossing 4.712 and ends it on the next 10.995. { int out = sin(ledIn) * 127.5 + 127.5; //Both LEDs will follow the sin wave but we also have to make it all positive numbers and set to a scale of 0-255 for the PWM range analogWrite(ledPinl, out); analogWrite(ledPinr, out); } handle_button(longPress,1); } //"bothStepped" - Both LEDs on, stepping down the brightness with each button press (4 settings from full bright to rather dim) void bothStepped() { longPress = 75; checkTemp(); setLEDStep(); analogWrite(ledPinl, ledStep); //Turns them both on together analogWrite(ledPinr, ledStep); handle_button(longPress,2); delay(DELAY); } //"singleStepped" - Just one LED on, stepping down the brightness with each button press (4 settings from full bright to rather dim) void singleStepped(){ longPress = 75; checkTemp(); setLEDStep(); analogWrite(ledPinl, ledStep); digitalWrite(ledPinr, LOW); handle_button(longPress,2); delay(DELAY); } //"sleep" external LEDs off but blink the power led on the circuit board. void sleep() { longPress = 75; checkTemp(); digitalWrite(ledPinl, LOW); //Turns off both High Power LEDs digitalWrite(ledPinr, LOW); // Blinks the powerPin light by checking the current time vs. the last time it went thru, once it is over the 1000 ms limit it changes the light's state unsigned long currentMillis = millis(); if(currentMillis - previousMillis > 1000){ previousMillis = currentMillis; if (ledState == LOW){ ledState = HIGH; } else { ledState = LOW; } digitalWrite(powerPin, ledState); } handle_button(longPress,3); delay(DELAY); } //"limpHome" The limp home mode, Like mode 1 the LEDs pulse back and forth, But slowly and only to half brightness. void limpHome() { float ledIn; float ledOutL; float ledOutR; checkTemp(); longPress = 75; for (ledIn = 4.712; ledIn < 10.995; ledIn = ledIn + .002) // This sets the start of the LED (ledOutL) pulse on the sin wave to the first zero crossing 4.712 and ends it on the next 10.995. { ledOutL = sin(ledIn) * 100 + 127.5; // Making the sin wave all positive numbers and setting it to a scale of 0-255 for the PWM range ledOutR = 255 - (sin(ledIn) * 127.5 + 127.5); // This inverts ledOutR so it pulses to the high as ledOutR pulses to the low analogWrite(ledPinl, ledOutL); analogWrite(ledPinr, ledOutR); } unsigned long currentMillis = millis(); if(currentMillis - previousMillis > 1000){ previousMillis = currentMillis; if (ledState == LOW){ ledState = HIGH; } else { ledState = LOW; } digitalWrite(powerPin, ledState); } handle_button(longPress,3); delay(DELAY); } //------------------------- // THE LOOP //------------------------- void loop(){ //Set what mode the LEDs are in based on how many times the button is pressed. while (buttonCount < 3) { bothFlipFlopPulse(); } while (buttonCount >= 3 && buttonCount < 6) { bothPulse(); } while (buttonCount >= 6 && buttonCount < 10) { bothStepped(); } while (buttonCount >= 10 && buttonCount < 14) { singleStepped(); } while (buttonCount == 14) { sleep(); } while (buttonCount == 15) { limpHome(); } delay(DELAY); }
Goodness! Such an astounding and supportive post this is. I outrageously cherish it. It's so great thus amazing. I am simply flabbergasted. I trust that you keep on doing your work like this later on moreover. 메이저놀이터
ReplyDeleteReally nice and interesting post. I was looking for this kind of information and enjoyed reading this one. Keep posting. Thanks for sharing 먹튀검증
ReplyDeleteI would like to thank you for the efforts you have made in writing this article. I am hoping the same best work from you in the future as well. In fact your creative writing abilities has inspired me to start my own Blog Engine blog now. Really the blogging is spreading its wings rapidly. Your write up is a fine example of it. 파워볼전용사이트
ReplyDelete그것은 훌륭한 사고 방식입니다. 그럼에도 불구하고 그 수학에 대해 설교하는 것이 무엇이든간에 모든 문장을 만드는 데 도움이되는 것은 아닙니다. 사실상 어떤 방법 으로든 본인의 글을 델리 시우스로 홍보하기 위해 노력한 것 외에도 많은 노력을 기울 였음에도 불구하고 귀하의 정보 사이트를 사용하는 것이 딜레마 인 것 같습니다. 아이디어를 다시 확인해 주시면 감사하겠습니다. 다시 한 번 감사합니다 먹튀안전사이트
ReplyDeleteNice knowledge gaining article. This post is really the best on this valuable topic. 먹튀폴리스
ReplyDelete블로그 주문 시스템에 댓글을 달 수 있습니다. 멋진 채팅을해야합니다. 귀하의 블로그 감사는 방문자를 증가시킬 것입니다. 이 사이트를 발견하게되어 매우 기뻤습니다. 읽어 주셔서 감사합니다 !! 먹튀검증
ReplyDeleteExcellent post.I want to thank you for this informative read, I really appreciate sharing this great post.Keep up your work 먹튀검증
ReplyDeletehttps://www.toto-casino.net/%EC%9D%B4%EA%B8%B0%EC%9E%90%EB%B2%B3 Very interesting, good job and thanks for sharing such a good blog. your article is so convincing that I never stop myself to say something about it. You’re doing a great job. Keep it up 이기자벳
ReplyDeleteHi there, I found your website via Google while looking for a related topic, your web site came up, it looks good. I’ve bookmarked it in my google bookmarks.오피사이트
ReplyDeleteA betting site list to play online sports betting in Turkey here, visit immediately. 먹튀검증
ReplyDeleteThis is very interesting, 토토
ReplyDeleteThe looks really great. Most of these smaller details are usually created employing wide range of heritage knowledge. I would like all of it substantially 토토
ReplyDeleteI’ve been absent for a while, but now I remember why 대구출장
ReplyDeleteI used to love this website. Thanks, I will try and check back more often. How frequently you update your site?
Keep functioning ,great job! 먹튀검증
ReplyDeleteIt's been a while since I've read this heart-throbbing post.사설토토사이트 I look forward to your kind cooperation.
ReplyDeleteI do not even know how I ended up here, but I thought this post was great.
ReplyDeleteI don't know who you are but certainly you are going to a famous blogger if you aren't already ;) Cheers! 대구오피
This is a great inspiring article.I am pretty pleased with your good work
ReplyDelete스포츠토토